Spectral Shape Decomposition by Using a Constrained NMF Algorithm
نویسندگان
چکیده
In this paper, the shape decomposition problem is addressed as a solution of an appropriately constrained Nonnegative Matrix Factorization Problem (NMF). Inspired from an idealization of the visibility matrix having a block diagonal form, special requirements while formulating the NMF problem are taken into account. Starting from a contaminated observation matrix, the objective is to reveal its low rank almost block diagonal form. Although the proposed technique is applied to shapes on the MPEG7 database, it can be extended to 3D objects. The preliminary results we have obtained are very promising.
منابع مشابه
Spectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging
Introduction Non-invasive Fluorescent Reflectance Imaging (FRI) is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical...
متن کاملA new algorithm for solving Van der Pol equation based on piecewise spectral Adomian decomposition method
In this article, a new method is introduced to give approximate solution to Van der Pol equation. The proposed method is based on the combination of two different methods, the spectral Adomian decomposition method (SADM) and piecewise method, called the piecewise Adomian decomposition method (PSADM). The numerical results obtained from the proposed method show that this method is an...
متن کاملRecovery of Constituent Spectra in 3d Chemical Shift Imaging Using Non-negative Matrix Factorization
In this paper we describe a non-negative matrix factorization (NMF) for recovering constituent spectra in 3D chemical shift imaging (CSI). The method is based on the NMF algorithm of Lee and Seung [1], extending it to include a constraint on the minimum amplitude of the recovered spectra. This constrained NMF (cNMF) algorithm can be viewed as a maximum likelihood approach for finding basis vect...
متن کاملجداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از Semi-NMF و تبدیل PCA
Unmixing of remote-sensing data using nonnegative matrix factorization has been considered recently. To improve performance, additional constraints are added to the cost function. The main challenge is to introduce constraints that lead to better results for unmixing. Correlation between bands of Hyperspectral images is the problem that is paid less attention to it in the unmixing algorithms. I...
متن کاملAlgorithms for Spectral Decomposition with Applications to Optical Plume Anomaly Detection
The analysis of spectral signals for features that represent physical phenomenon is ubiquitous in the science and engineering communities. There are two main approaches that can be taken to extract relevant features from these high-dimensional data streams. The first set of approaches relies on extracting features using a physics-based paradigm where the underlying physical mechanism that gener...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014